46 research outputs found

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    DNA protection by histone-like protein HU from the hyperthermophilic eubacterium Thermotoga maritima

    Get PDF
    In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, while binding to a single site occludes ∼35 bp, association of T. maritima HU with DNA of sufficient length to accommodate multiple protomers results in an apparent shorter occluded site size. Such complexes consist of ordered arrays of protomers, as revealed by the periodicity of DNase I cleavage. Association of TmHU with plasmid DNA yields a complex that is remarkably resistant to DNase I-mediated degradation. TmHU is the only member of this protein family capable of occluding a 35 bp nonspecific site in duplex DNA; we propose that this property allows TmHU to form exceedingly stable associations in which DNA flanking the kinks is sandwiched between adjacent proteins. We suggest that T. maritima HU serves an architectural function when associating with a single 35 bp site, but generates a very stable and compact aggregate at higher protein concentrations that organizes and protects the genomic DNA

    P2X7 receptor: Death or life?

    Get PDF
    The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis

    Protein biomarkers for radiation exposure: Towards a proteomic approach as a new investigation tool

    No full text
    Early biomarkers of radiation injury are critical for triage, treatment, and follow-up of large numbers of people exposed to ionising radiation after terrorist attacks or nuclear accident. Operational monoparametric protein or amino acid biomarkers (amylase, Flt3-Ligand, citrulline) can help for the diagnostic of radiation exposure or injury. However, these biomarkers are not sufficient for a fast and accurate triage, and if individuals are assessed more than 48 h after exposure. The comparative proteomic approach represents a promising powerful tool for the discovery of new radiation biomarkers. In association with multivariate statistics, proteomic enables to measure the level of hundreds or thousands of proteins at the same time and identifies sets of proteins that can discriminate different groups of individuals

    Inflammation and immunity in radiation damage to the gut mucosa

    Get PDF
    Erythema was observed on the skin of the first patients treated with radiation therapy. It is in particular to reduce this erythema, one feature of tissue inflammation, that prescribed dose to the tumor site started to be fractionated. It is now well known that radiation exposure of normal tissues generates a sustained and apparently uncontrolled inflammatory process. Radiation-induced inflammation is always observed, often described, sometimes partly explained, but still today far from being completely understood. The thing with the gut and especially the gut mucosa is that it is at the frontier between the external milieu and the organism, is in contact with a plethora of commensal and foreign antigens, possesses a dense-associated lymphoid tissue, and is particularly radiation sensitive because of a high mucosal turnover rate. All these characteristics make the gut mucosa a strong responsive organ in terms of radiation-induced immunoinflammation. This paper will focus on what has been observed in the normal gut and what remains to be done concerning the immunoinflammatory response following localized radiation exposure. © 2013 Agnès François et al

    Proteome changes in rat serum after a chronic ingestion of enriched uranium Toward a biological signature of internal contamination and radiological effect

    No full text
    The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40 mg/L, corresponding to 1 mg of uranium per animal per day) of either 4% 235U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (p andlt; 0.05). Using both inferential and non-supervised multivariate statistics, we show sets of spots features that lead to a clear discrimination between controls and EU exposed groups on the one hand (21 spots), and between 4% EU and 12% EU on the other hand (7 spots), showing that investigation of the serum proteome may possibly be of relevance to address both uranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect. © 2016 Elsevier Ireland Ltd

    In vivo screening of proteins likely to bind uranium in exposed rat kidney

    No full text
    International audienceUranium is a naturally abundant element which has been used in several industries. Internal exposure could occur via three main pathways that are ingestion, inhalation and wounds. It has been recently shown that chronic ingestion of uranium in drinking water induces an important uranium accumulation in kidney with a perturbation of iron metabolism in this organ. Whereas uranium speciation is a key parameter to elucidate the chemical reactivity and the mobility of an element, it remains poorly documented in most of environmental and biological media. A few examples of uranium complexation with biomolecules have been published recently but most of them are in vitro studies whereas in vivo experiments remain poorly investigated. In order to better understand possible competition of uranium towards metals involved in the metal-protein binding, i.e. iron, copper, calcium, a study on uranium speciation was investigated by doing an in vivo screening of target proteins likely to bind it in kidneys of exposed rats. Rats were chronically exposed via contaminated drinking water at 40mgL~' and killed 9 months after the beginning of exposure. Kidneys were dissected out and protein extract was prepared. Then, separation of renal proteins by isoelectric focusing gel electrophoresis (IEF) and two-dimensional gel electrophoresis (2-DE) followed by LA-ICPMS analysis were performed. IEF-LA-ICP MS showed that uranium could specifically bind few proteins in kidney whereas 2-DE-LA-ICP MS could indicate that uranium is not covalently bound to proteins in this organ. The results suggested that even at moderate concentrations of exposure, uranium can be observed chelated with some renal proteins that is very encouraging to understand the entry, storage and elimination of this element in kidneys. © by Oldenbourg Wissenschaftsverlag, Munchen

    An in vitro enzymatic assay coupled to proteomics analysis reveals a new DNA processing activity for Ewing sarcoma and TAF(II)68 proteins

    No full text
    Based on structural and functional similarities, translocated in liposarcoma/fusion (TLS/FUS) protein, Ewing sarcoma (EWS) protein and human TATA binding protein-associated factor (hTAF(II)68) have been grouped in the TLS-EWS-TAF(II)68 (TET) protein family. Translocations involving their genes lead to sarcomas. Polypyrimidine tract-binding protein-associated splicing factor (PSF), although not grouped in this family, presents structural and functional similarities with TET proteins and is involved in translocation leading to carcinoma. Beside their role in RNA metabolism, the precise cellular functions of these multifunctional proteins are not yet fully elucidated. We previously showed that both TLS/FUS and PSF display activities able to pair homologous DNA on membrane in an in vitro assay. In the present study, we address the question whether EWS and hTAF(II)68 also display pairing on membrane activities, and to a larger extent whether other proteins also exhibit such activity. We applied the pairing on membrane assay to 2-DE coupled to MS analysis for a global screening of DNA pairing on membrane activities. In addition to TLS/FUS and PSF, this test allowed us to identify EWS and hTAF(II)68, but no other proteins, indicating a feature specific to a protein family whose members share extensive structural similarities. This common activity suggests a role for TET proteins and PSF in genome plasticity control. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA

    Conditional Plasminogen Activator Inhibitor Type 1 Deletion in the Endothelial Compartment Has No Beneficial Effect on Radiation-Induced Whole-Lung Damage in Mice

    No full text
    International audiencePurpose To investigate whether the endothelial pool of plasminogen activator inhibitor type 1 (PAI-1) plays a role in the development of radiation-induced lung damage, as previously demonstrated in the intestine. Methods and Materials Human lung microvascular endothelial cells were exposed to 10 Gy irradiation so as to study their ability to acquire an “activated” phenotype. Mice in which the Cre-Lox strategy was used to produce PAI-1 deletion specifically in the endothelial compartment were exposed to 17 Gy whole-thorax irradiation and followed up for 2, 13, and 23 weeks after irradiation. Results Human lung microvascular endothelial cells had an activated phenotype after radiation exposure, overexpressed PAI-1, and underwent endothelial-to-mesenchymal transition. In mice, knockout of PAI-1 in the endothelium had no beneficial effect on radiation-induced lung damage and showed a tendency to worsen acute lesions. Conclusions As opposed to the intestine, the endothelial pool of PAI-1 does not play a determinant role in the development of radiation-induced lung damage. The therapeutic value of PAI-1 inhibition in lung radiation injury may be associated with other types of cells. © 2017 Elsevier Inc
    corecore